

Kinase inhibitor residence time curve fitting

Sam Hoare, PhD sam.hoare@pharmechanics.com

August 28 2019

Background

- Binding kinetics of kinase inhibitors is of great interest in drug discovery.
- The inhibitor residence time is frequently measured using a washout protocol:

Methods Mol Biol 2019, 1888: 45-71 (Figs 8 & 13) Promega webinar (slides 20 & 21) Aurelia Bioscience examples

Binding Kinetics Survey of the Drugged Kinome

Victoria Georgi,^{†,‡} Felix Schiele,^{†,⊥} Benedict-Tilman Berger,^{†,‡,§} Andreas Steffen,[†] Paula A. Marin Zapata,[†] Hans Briem,[†] Stephan Menz,[†] Cornelia Preusse,[†] James D. Vasta,^{||} Matthew B. Robers,^{||} Michael Brands,[†] Stefan Knapp,^{‡,§} and Amaury Fernández-Montalván*^{†,¶}

[†]Bayer AG, Drug Discovery, Pharmaceuticals, Müllerstraße 178, 13353 Berlin, Germany [‡]Structural Genomics Consortium, Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany

[§]Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany

Promega Corporation, 2800 Woods Hollow Road, Fitchburg, Wisconsin 53711, United States

Supporting Information

ABSTRACT: Target residence time is emerging as an important optimization parameter in drug discovery, yet target and off-target engagement dynamics have not been clearly linked to the clinical performance of drugs. Here we developed high-throughput binding kinetics assays to characterize the interactions of 270 protein kinase inhibitors with 40 clinically relevant targets. Analysis of the results revealed that on-rates are better correlated with affinity than off-rates and that the fraction of slowly dissociating drug-target complexes increases from early/preclinical to late stage and FDA-approved compounds, suggesting distinct contributions by each parameter with PK/ADME properties, we illustrate *in silico* and in cells how

kinetic selectivity could be exploited as an optimization strategy. Furthermore, using bio- and chemoinformatics we uncovered structural features influencing rate constants. Our results underscore the value of binding kinetics information in rational drug design and provide a resource for future studies on this subject.

New regression model

- A new equation for fitting the washout method data, that estimates the residence time, has been loaded into
 <u>GraphPad Prism</u> in a custom template designed by Pharmechanics.
- The template can be obtained from <u>here</u>.

Pre-incubate enzyme

& compound

Measure at various times

Measure at various times

See J Recept Signal Transduct Res 2009, 29: 84-93

- Download "[Pharmechanics] Competitor washout kinetics" from here.
- Open file and follow instructions on the following slides.

🔺 [Pharmechanics] Competitor washout kinetic	cs.pz	f:Nonlin fit of Competitor washout kinetics - GraphP	ad Prism 8.2.0 (435)									_			×
File Edit View Insert Change Arrange Family V	Vindo	ow Help													
Prism File Sheet Undo Clipboar	d	Analysis Interpret Change Draw	Write			Text				Expo	ort Pri	int S	Send	LA	
🛛 👝 - 🕒 - 🛃 🖉 - 🛞 🖍 - 🖒 - 🦑 🛅 -			√a w 😘 📃 ∽						~ A		xt E		⊴ •		
	(🖹 Analyze 🛅 🎉 📑 📰 🚛 🆅 🖽 🗔 🗸	ΤΤαΑΑ	B	ΙU	$X^2 X$	2		•			BP	W	٠	
Search ~		Table of results													
✓ Data with Results >>>		Nonlin fit	A	В	С	D	Е	F	G	Н	1	J	К	L	
Competitor washout kinetics		Table of results	With inhibitor												
	1	[Pha techanics] Competitor washout kinetics													
🕀 New Data Table	2	Baseli	= 0.000												
× Info »	4	Plateau	41.33												
(i) Project info 1	5	IPO	60.52												
Alow Info	6	Kobs	= 0.1586												
• New mjo	7	Koff	0.02041												
✓ Graphs »	8	Koff Tau	49.00												
Competitor washout kinetics	9	Koff half tim													_
① New Graph	10	Plateau Click this ice	nn												
× Lavouts	12														
* Layouts »	13	Koff	0.001000												
🕀 New Layout	14	95% CI (asymptotic)													
	15	Plateau	36.53 to 46.13												
1	16	IPO	55.93 to 65.10												
()	17	Koff	0.01113 to 0.02968												
Family »	18	Koff lau	33.69 to 89.85												
Competitor washout kinetics	20	Goodness of Fit	23.33 10 62.26												
Noplin fit	21	Degrees of Freedom	43												
	22	R squared	0.9735												
Competitor washout kinetics	23	Sum of Squares	145.0												
	24	Sy.x	1.836												
	25	Constraints													
	26	Baseline	Baseline = 0												
	27	Plateau	Plateau > 0	_											~
	<														>
€ ●		Nonlin fit of Compet	itor washou 🗸 🖉 🗸	Table	of res	ults		-						Q)

	s loads the equation into the "l	Jser-defined e	equations" list.
•	It only needs to be dor	ne once.	•
After that the	e new equation will be availabl	 le every time '	vou open Prism
U Info	■ Dose-response - Special, X is log(concentration) ■ Binding - Saturation	Delete	
Into Project info 1	Binding - Competitive	Delete All	
	Enzyme kinetics - Inhibition	Marca Ha	
Granhs	Enzyme kinetics - Velocity as a function of substrate Exponential	Move Up	
Competitor washout kinetics		Move Down	
	Polynomial Gaussian		
	Growth curves Inear guadratic curves		
• New Edyodi	Classic equations from prior versions of Prism		
<			Click OK then
Family	Pre-incubate target and inhibitor then, Remove unbound inhibitor then,		
Competitor washout kinetics	Measure binding at various times after adding tracer ligand.		close file
Nonlin fit			
Competitor washout kinetics	[Pharmechanics] Competitor washout kinetics Numerical derivatives		
•			
	Tutowy alata		

Data analysis Step 1: Control

Fit the control data (no inhibitor) to determine the observed association rate constant of the tracer.

Use built-in "One phase association" equation.

See screen shots on next slides.

Kinase inhibitor kinetic analysis.pzf:Inhibitor kinetic analysis - GraphPad Prism 8.2.0 (435)

File Edit View Insert Change Arrange Family Window Help

Kinase inhibitor kinetic analysis.pzf:Nonlin fit of Inhibitor kinetic analysis - GraphPad Prism 8.2.0 (435)

Prism File Sheet Undo	Clip	board	Analysis Interpret	Change	Draw	Write		Text		Export Pr	rint Send	LA	
□ - 😼 🖉 - 卷 ☆ - C -	of	C 7		<u></u>		√a w 😱	×		~ <u>A</u>	txt txt	- ≥		
	Ê	-	🗐 Analyze 🛅 🎢 🧵	#.# 🔽 1.23		ΤΤα	A A B	$\begin{bmatrix} \underline{U} & \mathbf{X}^2 & \mathbf{X}_2 \end{bmatrix}$	n n	- 🗾	P W	Û -	
Search	~		Table of results										Π
 Data with Results 	»		Nonlin fit	A		В	С	D	E	F	G	1	^
🗸 🗐 Inhibitor kinetic analysis			Table of results	Control								_	
🗐 Nonlin fit			One phase association									_	
New Data Table		2	Best-fit values										
× Info	~	3	YO	= 0.000							• . •		
	"	4	Plateau	39.53			P K	(is the	observe	ed ass	ociatio	on	
1 Project into 1		5	к	0.1586 <						C . I			
🕀 New Info		6	Tau	6.304				rate co	nstant	of the	trace	r.	
✓ Graphs	»	7	Half-time	4.370									
hibitor kinetic analysis		8	Span	= 39.53									
		9	Std. Error					• • • • • • • • •					
🕀 New Graph		10	Plateau	0.3574			In	is value	e will be	e need	ed for	the	
✓ Layouts	»	11	к	0.008792				•			• _		
New Lavout		12	95% CI (profile likelihood)					In	nibitor	anaiys	SIS.		
0		13	Plateau	38.82 to 40.25						-			
		14	К	0.1423 to 0.177	'4								-
		15	Tau	5.636 to 7.029								_	
Eamily		16	Half-time	3.906 to 4.872								_	
ranny	"	17	Goodness of Fit									_	
🔜 Inhibitor kinetic analysis		18	Degrees of Freedom	44								_	
🔲 Nonlin fit		19	R squared	0.9627								_	
Inhibitor kinetic analysis		20	Sum of Squares	179.7								_	
		21	Sy.x	2.021								_	
		22	Constraints	¥0 0								_	
		23	YU	YU = 0								_	
		24	ĸ	K > U									
		25											*
		•										*	
			🗄 🛈 🖻 🗠 📰	Nonlin fit of Inhibi	itor kine	etic ani 🗸 🥑	→ Table of re	sults				QQ	

File Edit View Insert Change Arrange Family Window Help

Data analysis Step 2: Inhibitor

Fit the inhibitor data to determine the dissociation rate constant of the inhibitor.

Use User-defined equation "[Pharmechanics] Competitor washout kinetics"

See screen shots on next slides.

🔺 Kinase inhibitor kinetic analysis.pzf:Inhibitor kinetic analysis - GranhPad Prism 8.2.0 (435)

Contact Pharmechanics (not GraphPad) File Edit View Insert Change Arrange User-defined Equation Prism Sheet Unde File for technical support on the equation. Equation Rules for Initial Values Default Constraints Trans [Pharmechanics] Competitor washout kinetics Search... Tip: Pre-incubate target and inhibitor then, ✓ Data with Results Remove unbound inhibitor then, Measure binding at various times after adding tracer ligand. Inhibitor kinetic analysis Contact sam.hoare@pharmechanics.com for technical support. 🔲 Nonlin fit New Data Table... X: Time in seconds or minutes Y: Tracer binding Info Koff is the dissociation Project info 1 Koff: Dissociation rate constant of inhibitor. Units of inverse time rate constant of the New Info... Basline: Nonspecific tracer binding. Constrain to zero if nonspecific has already been subtracted. ✓ Graphs inhibitor Plateau: Tracer binding at infinite time pleateau. ☑ Inhibitor kinetic analysis IPO: Initital percent occupancy of target population by inhibitor, before adding tracer. 🕀 New Graph... Kobs: Oberved association rate of tracer in the absence of inhibitor, measured in control experiment. Units of inverse Layouts time. ① New Layout... Y=Baseline+(Plateau-Baseline)*(1-(1-IPO*0.01*Kobs/(Kobs-Koff))*exp(-Kobs*X)-(IPO*0.01*Kobs/(Kobs-Koff))*exp (-Koff*X)) Family 🖽 Inhibitor kinetic analysis 🔲 Nonlin fit Inhibitor kinetic analysis Clone this equation Edit equation Help Close € QÐ THURLOF KINEUC ANALYSIS 6. ------100

Kinase inhibitor kinetic analysis.pzf:I	nhibita	or kinetic analysis - GraphP	Pad Prism 8 2 0 (435)					1	- 🗆	×
File Edit View Insert Change Arrange	Fami ^F	Parameters: Nonlinear Regi	ression				\times			
Prism File Sheet Undo	Clip	Model Method Compare	Constrain Initial values Rar	nge Output	Confidence	Diagnostics	Flag	× A -	port Print Send	LA
	Ē	Parameter Name	Constraint Type		Value	Hook		┟═╺∁═╸╽╙	🥕 🛃 🔽 🛛	0-
Search	~	Baseline C	onstant equal to	\sim	0	S				^
 Data with Results 	>>	Plateau M	lust be greater than	\sim	0	5				
🗸 🗐 Inhibitor kinetic analysis		IPO M	lust be between zero and	\sim	100	5				
🗐 Nonlin fit		Kobs C	onstant equal to	\sim	0.1586	5				
🕀 New Data Table		Koff M	lust be greater than	\sim	0	5				
✓ Info	»									
(i) Project info 1										
🕀 New Info										
 Graphs 	»									
🗠 Inhibitor kinetic analysis										
🕀 New Graph										
 Layouts 	>>				\square		_			
(±) New Layout						Enter	Kobs.	This is t	he obser	ved
					ວເເດ	ociatio	n rato	constar	nt (K) vali	ue from
	-				0350	Julatic				
Family	»						the co	ontrol ar	nalysis	
Inhibitor kinetic analysis										_
Nonlin fit	-	Constrain one parameter r	elative to another							
Inhibitor kinetic analysis			✓ must be greater than	1 time	es		\sim			
			→ must be greater than	1 time	es		\sim			
										~
				Lear	m C	ancel	ОК			>
₹ 41	> 🦕			515	G					Θ, ⊕,

Kinase inhibitor kinetic analysis.pzf:Inhibitor kinetic analysis - GraphPad Prism 8.2.0 (435)

File Edit View Insert Change Arrange Family Window Help

Prism File Sheet U	Undo Clipboard	Analysis	Change	Arrange	Draw	Write		Text		Export	Print	Send	LA
□ - 📴 🖉 - 💥 🖍 - 🗌	C- 💰 🛅 🖥				V	a 🚾 🤑 🔛	~ D. T. I.I	2	~ <u>A</u> -	tiff		⊴-	•
		[=]Analyze 🛗 🎢	🎢 🎼 🔟 🗸 🍈	▶• 🗗 •	□ • 1	$\mathbf{\Gamma} \mathbf{T} \boldsymbol{\alpha} \mathbf{A}$	A BIU	$X^2 X_2$				W	¥7.
Search	~												-
✓ Data with Results	»												- 1
👻 🖽 Inhibitor kinetic analys	sis												
🔲 Nonlin fit			50_										
🔲 Nonlin fit			507										
🕀 New Data Table		6				•							
✓ Info	»	luc Luc	40-	•		•		•					
 Project info 1 		ip		-									
🕀 New Info		bir					•						
🗸 Graphs	»	q	30-										
🗠 Inhibitor kinetic analysis		an		•									
🕀 New Graph		lig	20	1					Curve fit				
✓ Layouts	»	С О	207	/									
🕀 New Layout		ac					Developed	_					
		Tr:	10-			- C	Jontrol						
Family	>>					🔶 V	Nith inhib	oitor					
🖽 Inhibitor kinetic analysis													
🔲 Nonlin fit			0.		40	60		100					
🔲 Nonlin fit			0	20	40	60	80	100					
🗠 Inhibitor kinetic analysis					Tim	e (min)							
						()							
	<												>
E			Inhibito	or kinetic ana	lysis	~ <i>₽</i> •						e	

Kinase inhibitor kinetic analysis.pzf:	Nonlin	n fit of Inhibitor kinetic analysis - GraphPad Prism 8.2.0 (435)		- 🗆 X
File Edit View Insert Change Arrange	Family	v Window Help		
Prism File Sheet Undo	Clipb	Analysis Interpret Change Draw Analyze Analyze Image Image <td>Write Value 4 T T a A A I</td> <td>$\begin{array}{c} \text{Text} \\ & \blacksquare \\ \textbf{B} I \ \underline{U} \ \underline{x}^2 \ \underline{x}_2 \\ & \blacksquare \\ \end{array} \end{array} \xrightarrow{ \textbf{Export}} \begin{array}{c} \text{Export} \\ \blacksquare \\$</td>	Write Value 4 T T a A A I	$\begin{array}{c} \text{Text} \\ & \blacksquare \\ \textbf{B} I \ \underline{U} \ \underline{x}^2 \ \underline{x}_2 \\ & \blacksquare \\ \end{array} \end{array} \xrightarrow{ \textbf{Export}} \begin{array}{c} \text{Export} \\ \blacksquare \\ $
Search	~	Table of results		
✓ Data with Results	»	Nonlin fit	A	B C C C C C C C C C C C C C C C C C C C
🕆 🖽 Inhibitor kinetic analysis	-	Table of results	With inhibitor	Koff is the dissociation
🔲 Nonlin fit				
Nonlin fit		Pharmechanics Competitor Washout Kinetics Post fit values		rate constant of the
		3 Baseline	= 0.000	inhihitor
U New Data Table		4 Plateau	41.33	
🗸 Info	»	5 IPO	60.52	
 Project info 1 		6 Kobs	= 0.1586	
🕀 New Info		7 Koff	0.02041	
Granhs		8 Koff Tau	49.00	
	"	9 Koff half time	33.97	Koff lau is the residence time of
lnhibitor kinetic analysis		10 Std. Error		
🕀 New Graph		11 Plateau	2.381	the inhibitor (1 / Koff)
 Layouts 	»	12 IPO	2.275	
New Layout		13 KOT	0.004600	
0	-	15 Plateau	37 78 to 49 91	
		16 IPO	55 79 to 65 05	
Family	»	17 Koff	0.01117 to 0.03048	
🔲 Inhibitor kinetic analysis		18 Koff Tau	32.80 to 89.50	Koff half time is the
Noplin fit		19 Koff half time	22.74 to 62.04	
		20 Goodness of Fit		dissociation half time of the
🗠 Inhibitor kinétic analysis		21 Degrees of Freedom	43	
		22 R squared	0.9735	inhibitor (0.693 / Koff)
	-	23 Sum of Squares	145.0	
		24 Sy.x	1.836	
		`		
€		, 📰 🔲 🛈 📄 🔛 🔛 🖬 Nonlin fit of Inhibitor kine	etic ani 🗸 🔗 🕇 Table o	of results - Q 🚭

Summary and further information

• An equation has been loaded into Prism for analyzing inhibitor washout kinetics experiments commonly used for kinase targets.

Equation derivation

Equation derivation <u>Washout kinetics examples</u> <u>Methods Mol Biol 2019, 1888: 45-71</u> (Figs 8 & 13) <u>Promega webinar</u> (slides 20 & 21) <u>Aurelia Bioscience examples</u> <u>Contact & website</u> sam.hoare@pharmechanics.com <u>www.pharmechanics.com</u>